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Abstract. The presence of symmetries in a constraint satisfaction prob-
lem gives an opportunity for more efficient search. We provide a new way
of proving the existence of solution symmetries in all instances of a class
of matrix CSPs by way of model transformations. Given a model M and
a candidate symmetry σ, the approach first syntactically applies σ to M
and then shows that the resulting model σ(M) is semantically equivalent
to M . We show an implementation of the method using the modelling
language MiniZinc and the term re-writing language Cadmium and show
that it is able to prove certain kinds of symmetry.

1 Introduction

Solving a constraint satisfaction problem (CSP) can be made more efficient by
exploiting the symmetries of the problem. Roughly speaking the efficiency is
gained by omitting symmetric regions of the search space. The automated de-
tection of symmetries in CSPs has recently become a topic of great interest.
However, the majority of research into this area has been directed at individ-
ual instances of CSPs where the exact set of variables, constraints and domains
are known before the detection takes place. The most accurate and complete
methods for detecting solution symmetries are computationally expensive and
so limited in the size of problem they can tackle (e.g. [8, 6, 1]).

A CSP model represents a class of CSPs and is defined in terms of some
parameters. An instance is generated from the model by assigning values to the
parameters. There are automatic symmetry detection methods for CSP models,
as described in [9, 10]. However they are problem-specific or can only detect a
very small collection of simple symmetries, namely piecewise value and piecewise
variable interchangeability.

Mears et al. [5] proposed a broader framework to detect model symmetries
which only requires explicitly detecting solution symmetries on small instances.
The global framework can be described as performing the following steps:

1. Detect symmetries on some collection of small instances of the model,
2. Extend the detected symmetries to model permutations,
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3. Filter the model permutations to keep only those that are likely to be sym-
metries for all instances of the model (candidate model symmetries),

4. Prove that the selected model permutations are indeed symmetries for every
instance of the model (model symmetries).

Mears et al. [5] developed an automated implementation of this framework on
matrix models (i.e. the variables of each instance have an underlying matrix
structure) that tackles steps 1, 2 and 3 whilst preliminary attempts at 4, using
graph techniques, can be found in [4]. These graph theoretic approaches were,
however, ad hoc and not automated. Automating step 4 can be approached by
way of automated theorem proving as in [3], where the authors represent their
models in existential second order logic and use a theorem proving application to
verify that a candidate model symmetry is a model symmetry. Whilst potentially
quite powerful, this approach requires a large amount of work to translate a
practical model into the required form.

This paper describes a new method for proving that a given candidate sym-
metry is a model symmetry by way of model transformations. Specifically, if we
apply our candidate symmetry to our model and obtain an “equivalent” model
in return, then we can deduce that our candidate symmetry is indeed a solu-
tion symmetry. Our implementation uses MiniZinc as the modelling language
and Cadmium to perform model transformations. Our method focuses on prov-
ing simple variable symmetries (swapping dimensions, inverting dimensions and
permutations of a dimension) on arbitrary matrix models. Two benefits of our
method are:

1. we act directly on the MiniZinc model, being the same model that could be
used in solving a given instance, and

2. the theoretical steps to transform the model are closely matched to the
Cadmium rules that transform the MiniZinc model.

The limitations of our method are that we only consider matrix models and
particular matrix permutations as candidate symmetries. Our results, however,
show that our method has potential and we believe that we can extend our
implementation to deal with many other kinds of model symmetries.

2 Background

A CSP is a tuple (X,D,C) where X represents a set of variables, D a set of
values and C a set of constraints. For a given CSP, a literal is defined to be an
ordered pair (x, d) ∈ X × D and represents the expression x = d. We denote
the set of all literals of a CSP P by lit(P ) and define var(x, d) = x, for all
(x, d) ∈ lit(P ). An assignment A is a set of literals. An assignment over a set
of literals V ⊆ X has precisely one literal (x, d) for each variable x ∈ V . An
assignment over X is called a complete assignment.

A constraint c is defined over a set of variables, denoted by vars(c), and
specifies a set of allowed assignments over vars(c). An assignment A over V ⊆ X



satisfies constraint c if vars(c) ⊆ V and the set {(x, d) ∈ A | x ∈ vars(c)} is
allowed by c. A solution is a complete assignment that satisfies every constraint
in C.

A solution symmetry σ of a CSP P is a permutation on lit(P ) that preserves
the set of solutions [1], i.e. σ is a bijection from lit(P ) to lit(P ) that maps
solutions to solutions. A permutation f on the set of variables X induces a
permutation σf on the set of literals lit(P ) in the obvious way, i.e. σf (x, d) =
(f(x), d). A variable symmetry is a permutation of the variables whose induced
literal permutation is a solution symmetry. Similarly, a value symmetry is a
solution symmetry σf (x, d) = (x, f(d)), for some permutation f on D. If d
is a set, then f is a permutation on all possible elements of d. A variable-value
symmetry is a solution symmetry that is neither a variable nor a value symmetry.

A CSP model is a parametrised form of CSP, where the overall structure of
the problem is specified, but particular details such as size are omitted. A model
permutation σ of a CSP model M is a function that takes an instance P of the
model M and produces a permutation on lit(P ), i.e. σ(P ) is a permutation on
lit(P ), for all instances P of M . A model symmetry σ of a CSP model M is
a model permutation such that σ(P ) is a solution symmetry, for all instances
P of M . A matrix model is a model M such that the variables of M form an
n-dimensional matrix of the following form:

{x[i1, i2, . . . , in] | 1 ≤ ij ≤ dj for all 1 ≤ j ≤ n},

where the dj ’s may be determined by the parameters of the model.

Example 1. The Latin square problem of size N is to construct an N×N square
where each of the N2 cells has an integer value from 1 to N , and each value
appears exactly once in each row and exactly once in each column.

Below is a model of the Latin square problem of size N . The model uses N3

zero-one variables – one for each combination of row, column and value – where
the variable x[i, j, k] is one if and only if the cell at row i and column j has the
value k.

X[N ] ={x[i, j, k] | i, j, k ∈ {1, 2, . . . , N}}
D[N ] ={0, 1}

C[N ] ={
∑

1≤k≤N

x[i, j, k] = 1 | i, j ∈ {1, 2, . . . , N}}∪

{
∑

1≤j≤N

x[i, j, k] = 1 | i, k ∈ {1, 2, . . . , N}}∪

{
∑

1≤i≤N

x[i, j, k] = 1 | j, k ∈ {1, 2, . . . , N}}.

This problem has many model symmetries; one of them is that the i and j
dimensions can be interchanged (diagonal reflection of the square). ut

Our implementation utilises the modelling language MiniZinc [7] and the rule-
based term rewriting language Cadmium [2]. MiniZinc allows the specification of



parametrised models and supports quantification of constraints over parameters.
These languages are explained briefly in Section 4.

Example 2. The following is the Latin Square model from Example 1 written in
MiniZinc.

set of int: range = 1..N;

array[range, range, range] of var 0..1: x;

constraint forall (i, j in range) ((sum (k in range) (x[i,j,k]) = 1));
constraint forall (i, k in range) ((sum (j in range) (x[i,j,k]) = 1));
constraint forall (j, k in range) ((sum (i in range) (x[i,j,k]) = 1));

ut

3 Proving Symmetries by Model Transformation

Motivated by the kinds of matrix model permutations investigated in [5] (i.e.
dimension swap, dimension inversion and dimension permutations), we describe
an automated method that is capable of proving when such permutations are
indeed model symmetries. Specifically, given a common matrix permutation σ on
the variables of a model M , we prove that σ is a symmetry of M by showing that
σ(M) can be rewritten to a semantically equivalent form that is syntactically
equal to M . In other words, the symmetry σ is applied to M , and then σ(M) is
shown to be equivalent to M , which proves that σ is a model symmetry.

Given a model with a set of quantified constraints C, and a symmetry σ, the
method has the following steps:

1. Compute σ(c) for each constraint c ∈ C, giving a set C ′ = {σ(c)|c ∈ C}.
2. Normalise every constraint c ∈ C and every constraint c′ ∈ C ′ as follows:

(a) Reduce the expressions used as array indices to single variables by sub-
stitution.

(b) Simplify arithmetic expressions.
(c) Simplify quantifications.
(d) Reorder consecutive quantifications.

3. Find a one-to-one matching between the constraints in C and the constraints
in C ′.

We now describe each of these steps in detail.

3.1 Computing σ(c)

We consider the following three types of permutations acting on a matrix of
variables:

– Swapping of dimensions j and k:
x[i1, i2, . . . , ij , . . . , ik, . . . , in] 7→ x[i1, i2, . . . , ik, . . . , ij , . . . , in],
where j < k and dj = dk,

– Inverting of dimension j:
x[i1, i2, . . . , ij , . . . , in] 7→ x[i1, i2, . . . , dj − ij + 1, . . . , in],



– All permutations of dimension j:
x[i1, i2, . . . , ij , . . . , in] 7→ x[i1, i2, . . . , ϕ(ij), . . . , in], where ϕ represents an ar-
bitrary permutation on {1, 2, . . . , dj},

– All permutations of values:
x[i1, i2, . . . , in] 7→ ϕ(x[i1, i2, . . . , in]), where ϕ represents an arbitrary per-
mutation on the domain of values.

– Inverting of values:
x[i1, i2, . . . , in] 7→ u− (x[i1, i2, . . . , in]) + l, where l and u are the lower and
upper bounds of the value domain.

These correspond to symmetries considered by Mears et al. [5] and occur com-
monly in matrix models. The constraint σ(c) is constructed by replacing each
occurrence of x[i1, i2, . . . , in] in c with its image σ(x[i1, i2, . . . , in]) as given above.

Example 3. One of the constraints of the Latin square problem (Example 1) is:

(∀i, j ∈ R)
∑
k∈R

x[i, j, k] = 1

where R = {1, 2, . . . , N}. Let σ be the symmetry that swaps dimensions 1 and
2:

x[i, j, k] 7→ x[j, i, k]

By substituting x[j, i, k] for x[i, j, k], we see that σ(c) is:

(∀i, j ∈ R)
∑
k∈R

x[j, i, k] = 1

ut

3.2 Substituting complex expressions

The goal of this and the next step is to reduce all array accesses x[e1, e2, . . . , en],
where each ej is an expression, to the form x[i1, i2, . . . , in] where each ij is a single
variable (or constant) and the name of the variables ij are in lexicographical
order. In particular, the name of a variable ij is lexicographically less than the
name of ik if j < k.

In this step we introduce variables ij that will ultimately take the place of
the expressions ej . We assume that an expression ej is an arithmetic expression
built from addition and subtraction and only involves one quantified variable qj .
Thus, there is a corresponding linear function f such that ej = f(qj).

If ej is a constant, nothing needs to be done and ij = ej . Otherwise, ej is
a function of a quantified variable qj and therefore ej = f(qj) for some linear
function f . We introduce a new variable ij and let ij = ej ; therefore qj = f−1(ij).
Using this identity, we replace all occurrences of qj throughout the constraint
with f−1(ij). As a result, every ej = f(qj) becomes ej = f(f−1(ij)) = ij .

We assume that the names of the introduced variables are generated in lex-
icographical order. We perform the substitution of the expressions ej in order
that they appear in the array access; this ensures that after simplification, the
names of the ij variables in x[i1, i2, . . . , in] are in lexicographical order.



Example 4. Consider again one of the constraints of the Latin square problem
(Example 1):

(∀i, j ∈ R)
∑
k∈R

x[i, j, k] = 1

where R = {1, 2, . . . , N}. Let σ be the symmetry that inverts dimension 1:

x[i, j, k] 7→ x[N − i+ 1, j, k]

By substituting x[N − i+ 1, j, k] for x[i, j, k], we see that σ(c) is:

(∀i, j ∈ R)
∑
k∈R

x[N − i+ 1, j, k] = 1

Let us now substitute the first expression in the array access. We introduce a
new variable α = N− i+1. We see that α is a function of the quantified variable
i, and that i = N − α + 1. Next, we replace each occurrence of the quantified
variable i with N − α+ 1, giving:

(∀(N − α+ 1), j ∈ R)
∑
k∈R

x[N − (N − α+ 1) + 1, j, k] = 1

ut

3.3 Simplifying expressions

In this step basic arithmetic and permutation simplifications are performed.
These are (where ϕ is an arbitrary permutation):

? a− b Z⇒ a+ (−b)
? −(a+ b) Z⇒ (−a) + (−b)
? −(−(a)) Z⇒ a
? a+−(a) Z⇒ 0
? −(0) Z⇒ 0
? a+ 0 Z⇒ a
? a− b = c Z⇒ b− a = −c (if b <lex a)
? ϕ(x) 6= ϕ(y) Z⇒ x 6= y
? ϕ(ϕ−1(a)) Z⇒ a
? ϕ−1(ϕ(a)) Z⇒ a
? alldifferent(ϕ(a)) Z⇒ alldifferent(a)
? alldisjoint(ϕ(a)) Z⇒ alldisjoint(a)
? card(ϕ(a)) Z⇒ card(a)
? a ∈ ϕ(b) Z⇒ ϕ−1(a) ∈ b

In addition, any terms of the form ϕ(a) are substituted (à la Section 3.2)
so that the ϕ permutations appear only in the quantification heads to be dealt
with in the next section.



Example 5. In Example 4 we ended with the constraint:

(∀(N − α+ 1), j ∈ R)
∑
k∈R

x[N − (N − α+ 1) + 1, j, k] = 1

This is simplified to:

(∀(N − α+ 1), j ∈ R)
∑
k∈R

x[α, j, k] = 1

As a result, all indices in the array access are single variables. ut

3.4 Simplifying quantifications

The naive substitutions of the previous steps may leave quantifications in an
ambiguous state where the object being quantified is not an isolated variable. In
this step we attempt to repair these quantifications.

Consider a quantification ∀(f(i) ∈ R) where i is a variable, f a function and
R is a set. We interpret this as meaning {f(i)|f(i) ∈ R}, i.e. the set of all values
f(i) that lie within R. For particular functions f , such quantifications can be
simplified into an unambiguous form. We apply transformations for two kinds of
function.

? ∀((dj − i+ 1) ∈ {1, 2, . . . , dj}) Z⇒ ∀(i ∈ {1, 2, . . . , dj}).
? ∀(ϕ(i) ∈ R) Z⇒ ∀(i ∈ R) where ϕ is a permutation on R.

(Note that the first is a special case of the second.)

Example 6. In Example 5 we ended with the constraint:

(∀(N − α+ 1), j ∈ R)
∑
k∈R

x[α, j, k] = 1

The quantification is simplified so that the constraint becomes:

(∀α, j ∈ R)
∑
k∈R

x[α, j, k] = 1

since R = {1, 2, . . . , N}. ut

3.5 Reordering of consecutive quantifications

The last step of constraint normalisation is to reorder consecutive quantifica-
tions. In this step, any two quantifications that appear immediately next to
one another are reordered so that the names of the quantified variables are in
lexicographical order.

? ∀j ∈ Rj ,∀i ∈ Ri Z⇒ ∀i ∈ Ri,∀j ∈ Rj if i is lexicographically less than j.



3.6 Matching constraints

The final step of the method is to match the constraints in C with the constraints
in C ′. A constraint c ∈ C is considered to match a constraint c′ ∈ C ′ if the two
constraints are identical up to variable renaming. If there exists a constraint
c ∈ C for every c′ ∈ C ′, then the symmetry is deemed to hold on the model.

4 Implementation

The transformations described in the previous section are implemented as Cad-
mium rules that act on a MiniZinc model. Before showing the details of our
implementation, we describe briefly MiniZinc and Cadmium.

A MiniZinc model is a set of items. The items of interest for us are constraint
items: it is these that we will be manipulating. Consider this example constraint
item:

constraint forall (i,j in 1..N) ((sum (k in 1..N) (x[i,j,k]) = 1));

The token constraint introduces a constraint item. The forall indicates a
quantification of some variable(s) over some range(s) of values. The first paren-
thesised part (i,j in 1..n) is called a generator and introduces the two vari-
ables that are to be quantified, and that both range over the set of integers from
1 to N inclusive. The body of the quantification is the second parenthesised
part. The left hand side of the = constraint is a sum expression that introduces
an index variable k which also ranges over the set 1 to N , and the expression as
a whole evaluates to the sum of x[i,j,k] for a given i and j over those values
of k. The right hand side is simply the constant 1. This constraint item therefore
represents the constraint:

(∀i, j ∈ R)
∑
k∈R

x[i, j, k] = 1

where R = {1, 2, . . . , N}.
MiniZinc models are translated into terms to be manipulated by Cadmium

rules. A Cadmium rule has the following form:

Context \ Head <=> Guard | Body.

The meaning of a rule is that wherever Head occurs in the model it should be
replaced by Body, but only if Guard is satisfied and if Context appears in the
conjunctive context of Head. Roughly, the conjunctive context of a term is the
set of all terms that are joined to it by conjunction. The Context and Guard

parts are optional. Consider the following example Cadmium rules:

-(-(X)) <=> X.

constraint(C) <=> ID := unique_id("con") |
(constraint_orig(ID,C) /\ constraint_to_sym(ID,C)).



The first rule implements a basic arithmetic identity. Identifiers such as X that
begin with an uppercase letter are variables and can match any term. The head
-(-(X)) matches any term X that is immediately preceded by two negations,
and such a term is replaced by the body X. The second rule is more com-
plex. It matches any constraint item constraint(C) and replaces it with the
conjunction constraint_orig(ID,C) /\ constraint_to_sym(ID,C). The body
of the constraint item C is duplicated into two items constraint_orig(ID,C)

and constraint_to_sym(ID,C), where the new names constraint_orig and
constraint_to_sym are arbitrary and do not have any interpretation in Mini-
Zinc. The guard ID := unique_id("con") calls the standard Cadmium function
unique_id to supply a unique identifier to be attached to the constraints. This
guard always succeeds; its purpose is to assign a value to ID.

Each step of the method corresponds to a set of Cadmium rules. In this sec-
tion we show excerpts of the relevant parts of the Cadmium rules that implement
these steps. Particular details of Cadmium will be explained as necessary.

4.1 Computing σ(c)

First, the constraints are duplicated and the symmetry is applied.

% Every constraint C is given a unique ID and is duplicated.
constraint(C) <=> ID := unique_id("con") |

(constraint_orig(ID,C) /\ constraint_to_sym(ID,C)).

% Every constraint in the duplicated set has the symmetry applied.
constraint_to_sym(ID,C) <=> constraint_sym(ID,sigma(C)).

The rule for sigma depends on the particular symmetry to be tested. Here are
three possible definitions, corresponding to the first three kinds of permutation
in Section 3.1.

% Dimensions 1 and 2 swap: x[i,j,k] -> x[j,i,k]
sigma(aa(id("x"), t([I,J,K]))) <=> aa(id("x"), t([J,I,K])).

% Inverting of dimension 1: x[i,j,k] -> x[n-i+1,j,k]
sigma(aa(id("x"), t([I,J,K]))) <=>

aa(id("x"), t([id("n")+(-I)+i(1),J,K])).

% All permutations of dimension 1: x[i,j,k] -> x[phi(i),j,k]
sigma(aa(id("x"), t([I,J,K]))) <=>

aa(id("x"), t([permutation(phi,I),J,K])).

% Traverse the entire constraint term to apply the symmetry.
sigma(E) <=> ’$arity’(E) ‘$==‘ 0 | E.
sigma(E) <=> [F|A] := ’$deconstruct’(E) |

’$construct’([F | list_map(sigma, A)]).

The term aa(id("x"), t([I,J,K])) represents a MiniZinc array access of the
form x[I,J,K], where I, J and K are arbitrary terms. The id(S) term represents
an identifier with name S (a string), and the t([...]) term represents a tuple
(in this case the indices of the array).

The final two rules implement a top-down traversal of a term. Zero-arity
terms, such as strings, are handled in the first rule: they are left unchanged.
Compound terms, such as constraint_to_sym(ID,C), are broken into their



functor (constraint_to_sym) and their arguments (ID and C), and the sym-
metry is applied recursively to the arguments. The special $deconstruct and
$construct functions respectively break a term into its parts or reconstruct a
term from its parts.

4.2 Substituting complex expressions

In this step we find the expressions used in array accesses and replace them
with single variables. The first part is to find those expressions used in the array
accesses.

% Extract array indices in the order that they are used.
% I,J,K may be complex expressions.
extract_indices(aa(_Array, t([I,J,K]))) <=> [I,J,K].
% (Traversal omitted.)

The result is a list of expressions that should be replaced with single variables.
This list is passed as the first argument to the rename_list rule. Note that the
order that the expressions were found in the array access is also the order in
which they are renamed.

rename_list([], T) <=> T.
% Replace in term T the complex expression X with a fresh variable Y.
rename_list([X|Xs], T) <=>

Y := unique_id("index") /\
renaming(From, To) := compute_renaming(X, id(Y)) |

substitute_ids([From ‘maps_to‘ To], T).

The term X is the expression ej to be replaced. The first part of the guard
Y := unique_id("index") generates the fresh variable ij . As described in Sec-
tion 3.2, we assume that ej = f(qj) and replace all occurrences of qj with
f−1(ij). The rule compute_renaming computes this replacement f−1(ij); the
standard Cadmium rule substitute_ids performs the replacement throughout
the term T.

The compute_renaming begins with the complex expression ej as the first
argument, and the replacement variable ij as the second argument. Parts of the
expression are moved to the second argument until the first argument is a single
variable (a bare identifier).

% The inverse of phi(X) is invphi(X).
compute_renaming(permutation(Phi, X), Y) <=>

compute_renaming(X, inverse_permutation(Theta, Y)).

% If X is a global variable (e.g. a parameter), then move it to
% the right hand side.
% X + Y = Z --> Y = Z - X.
decl(int,id(X),_,global_var,_) \

compute_renaming(id(X)+Y, Z) <=> compute_renaming(Y, Z + (-id(X))).
% -X = Y -> X = -Y.
compute_renaming(-(id(X)), Y) <=> compute_renaming(id(X), -(Y)).
% X + Y = Z --> X = Z - Y.
compute_renaming(id(X)+Y, Z) <=> compute_renaming(id(X), Z + -(Y)).
% -X + Y = Z --> X - Y = -Z.
compute_renaming(-(id(X))+Y, Z) <=> compute_renaming(id(X) + -(Y), -(Z)).

% When the left hand side is a mere identifier, the right hand side
% is the expression to replace it with.
compute_renaming(id(X), Y) <=> renaming(id(X), Y).



Note the use of the contextual guard decl(int,id(X), ,global var, ) in the
second rule. This means that the identifier X is moved to the second argument
only if it is declared as a global variable somewhere in the conjunctive context
of the term being matched to the head. This contextual matching feature of
Cadmium allows parts of the model that occur in distant parts of the model to
be used when determining if a rule should apply. Also note that a pattern such
as id(X)+Y exploits the commutativity and associativity of addition; Cadmium
rearranges the expression as needed to make the pattern match.

4.3 Simplifying expressions and quantifications

The arithmetic identities in Section 3.3 translate naturally into Cadmium rules:

% Arithmetic simplification rules.
X-Y <=> X + -(Y).
-(X+Y) <=> -(X) + -(Y).
-(-(X)) <=> X.
% Et cetera.

Likewise, the reordering of consecutive quantifications is simple (although it
requires some knowledge of how MiniZinc quantifications appear as terms in
Cadmium):

gen(’$cc’(decl(int,Var1,no,VarKind1,A1),
gen(’$cc’(decl(int,Var2,no,VarKind2,A2),Body)))) <=>

Var1 ‘$>‘ Var2 |
gen(’$cc’(decl(int,Var2,no,VarKind2,A2),

gen(’$cc’(decl(int,Var1,no,VarKind1,A1),Body)))).

A gen term represents a generator such as (i in 1..n). Briefly, this rule states
that if there are two consecutive generators over variables Var1 and Var2 re-
spectively, and Var2 comes lexicographically before Var1, then the order of the
generators should be swapped.

4.4 Matching constraints

After all normalisation is done, the model has the set of normalised original
constraints C, represented by constraint_orig terms, and the set of normalised
symmetric constraints C ′, represented by constraint_sym terms. In the final
step we attempt to match each constraint_sym term with a constraint_orig

term.

constraint_orig(ID1,C1) /\ constraint_sym(ID2,C2) <=>
identical_up_to_renaming(C1,C2) | true.

If two constraints are identical up to renaming (as tested by a standard Cad-
mium rule), they are eliminated from the model. If at the end of execution no
constraints remain in the model, the symmetry is deemed to hold. If there are
any remaining constraints, they are the ones that could not be matched and help
to explain why the symmetry could not be proved to hold.



5 Results

We have tested our model transformation approach for symmetries found by
Mears et al. [5] in a suite of benchmark problems. Below are the MiniZinc mod-
els that we tested using our method, followed by Table 1 which lists, for each
problem and symmetry, whether our implementation was able to show that the
symmetry holds.

Latin Square (integer).

int : n;
array[1..n,1..n] of var 1..n: x;

constraint forall (i in 1..n) (alldifferent (j in 1..n) (x[i,j]));
constraint forall (j in 1..n) (alldifferent (i in 1..n) (x[i,j]));

The variable x[i,j] being equal to k represents the cell at row i and column j having
the value k.

Steiner Triples.

int: nb = n * (n-1) div 6;
array[1..nb,1..n] of var 0..1: x;

constraint forall (i in 1..nb)
(sum (j in 1..n) (x[i,j])= 3);

constraint forall (i,j in 1..nb where i!=j)
(sum (k in 1..n) (x[i,k] * x[j,k]) <= 1);

The variable x[i,j] being equal to 1 represents the element j belonging to the triple i.

BIBD.

int: v;
int: k;
int: lambda;
int: b = (lambda * v * (v - 1)) div (k * (k - 1));
int: r = (lambda * (v - 1)) div (k - 1);

array [1..v, 1..b] of var bool: m;

constraint forall (i in 1..v) (sum (j in 1..b) (bool2int(m[i, j])) = r);

constraint forall (j in 1..b) (sum (i in 1..v) (bool2int(m[i, j])) = k);

constraint forall (i1, i2 in 1..v where i1 != i2)
(sum (j in 1..b) (bool2int(m[i1,j] /\ m[i2,j])) = lambda);

The variable m[i,j] being equal to 1 represents the object i belonging to block j.

Social Golfers.

int: n_groups;
int: n_per_group;
int: n_rounds;
int: n_golfers = n_groups * n_per_group;

set of int: groups = 1..n_groups;
set of int: group = 1..n_per_group;
set of int: rounds = 1..n_rounds;
set of int: golfers = 1..n_golfers;



array [rounds, groups] of var set of golfers: x :: is_output;

constraint forall (r in rounds, g in groups)
(card(x[r, g]) = n_per_group);

constraint forall (r in rounds)
(all_disjoint (g in groups) (x[r, g]));

constraint forall (a, b in golfers where a < b)
(sum (r in rounds, g in groups)

(bool2int(a in x[r, g] /\ b in x[r,g])) <= 1);

The variable x[i,j] is the set of players who are in Group j in Week i.

N-Queens (Boolean).

array[1..N,1..N] of var 0..1: x;

constraint forall (i in 1..N) (sum (j in 1..N) (x[i,j]) = 1);
constraint forall (j in 1..N) (sum (i in 1..N) (x[i,j]) = 1);
constraint forall (k in 2-N..N-2)

(sum (i,j in 1..N where i-j= k) (x[i,j]) <= 1);
constraint forall (k in 3..N+N-1)

(sum (i,j in 1..N where i+j= k) (x[i,j]) <= 1);

The variable x[i,j] being equal to 1 represents a queen being placed in square (i,j).

N-Queens (integer).

int: n;
array [1..n] of var 1..n: x;

constraint
forall (i,j in 1..n where i != j) (

x[i] != x[j] /\ x[i]+i != x[j]+j /\ x[i]-i != x[j]-j
);

The variable x[i] taking the value j means that the queen in column i is in row j.

The results in Table 1 show that we can verify the existence of some common
variable and value symmetries in selected well-known matrix models. In addition, we
have tested symmetries that are known not to hold on the models and verified that the
implementation fails to prove them.

Our implementation does not deal with variable-value symmetries that cannot be
expressed as a composition of a variable symmetry with a value symmetry e.g. the
solution symmetry σ(x[i], j) = (x[j], i) in N -Queens (integer). One way to step around
this problem is to translate one’s model into a Boolean model (in an appropriate way),
where now the value symmetries and variable-value symmetries are simply variable
symmetries. Our implementation does not, as yet, handle models that contain arith-
metic in “where” clauses e.g. Boolean N -Queens.

6 Conclusion

The automatic detection of CSP symmetries is currently either restricted to problem
instances, is limited to the class of symmetries that can be inferred from the global
constraints present in the model, or requires the use of automated theorem provers.
This paper provides a new way of proving the existence of model symmetries by way



Table 1. Summary of Symmetries Proved

Problem Variable Symmetries Proved

Latin Squares (Boolean) x[i,j,k] 7→ x[j,i,k] Yes
x[i,j,k] 7→ x[i,k,j] Yes
x[i,j,k] 7→ x[N-i+1,j,k] Yes
x[i,j,k] 7→ x[ϕ(i),j,k] Yes
x[i,j,k] 7→ x[i,ϕ(j),k] Yes
x[i,j,k] 7→ x[i,j,ϕ(k)] Yes

Latin Squares (integer) x[i,j] 7→ x[j,i] Yes
x[i,j] 7→ x[ϕ(i),j] Yes
x[i,j] 7→ x[i,ϕ(j)] Yes
x[i,j] 7→ ϕ(x[i,j]) Yes

Steiner Triples x[i,j] 7→ x[ϕ(i),j] Yes
x[i,j] 7→ x[i,ϕ(j)] Yes

BIBD x[i,j] 7→ x[ϕ(i),j] Yes
x[i,j] 7→ x[i,ϕ(j)] Yes

Social Golfers x[i,j] 7→ x[ϕ(i),j] Yes
x[i,j] 7→ x[i,ϕ(j)] Yes
x[i,j] 7→ ϕ(x[i,j]) Yes

N -Queens (Boolean) x[i,j] 7→ x[j,i] No
x[i,j] 7→ x[N-i+1,j] No

N -Queens (integer) x[i] 7→ x[N-i+1] Yes
x[i] 7→ N-x[i]+1 Yes

of model transformations on parametrised matrix models. We show that simple ma-
trix permutations, such as swapping and inverting dimensions, can be shown to be
model symmetries using this method. Pleasingly, our method has also been successful
in showing that an arbitrary permutation (which represents a large group of symme-
tries) applied to a dimension of the matrix of variables is a model symmetry.

Our implementation is at present somewhat ad hoc and cannot yet deal with gen-
eral arithemetic expressions e.g. Boolean N -queens. We are currently extending our
implementation to deal more generally with matrix models.
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